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A finite-storage iterative algorithm is proposed for performing spectral analysis
and synthesis with respect to an arbitrary symmetric operator. This operator can be
of any nature, and it is only necessary to define its action. The whole analysis may
be performed by a repeated application of the operator. Compared with traditional
methods, our approach allows us to treat discrete systems of very high dimension. As
an example, we consider in the framework of an ocean governed by the Laplace tidal
equations the problem of separation of large-scale geostrophic modes and surface-
waves contributing to a given flow. As a second example we apply the algorithm to
a problem in satellite remote sensing. We reconstruct the mean large-scale oceanic
circulation from observed sea surface height data. In the case of a synthetic data set
the agreement of analytical and numerical results is satisfactosyoss Academic Press
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1. INTRODUCTION

Frequently the analysis of physical phenomena rests on the ability to investigate
spectral properties of differential operators and to relate experimental data to them
amples include determination of resonant frequencies, density of states, shapes of
vibrational modes, distribution of energy over the spectrum, etc. The related operatc
Hilbert spaces typically are self-adjoint and their structure may be interpreted in tern
eigenvalues and eigenvectors, even if they possess continuous spectra.

In conventional numerical analysis the original operator is approximated by a finite-|
model which provides estimates for distribution of eigenvalues and related amplitud
decomposition of data into a sum of eigenvectors. However, although the spectrum
finite-rank model is always discrete, at certain scales its density may be so high (this
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2 YAREMCHUK AND SCHROTER

certainly be the case when we try to approximate continuous spectra) that it may I
like a continuous one. Numerically it might be impossible to evaluate the eigenvalues
eigenvectors explicitly. Fortunately, in such cases only projectors on finite spectral band:
equivalently, only sums of eigenvectors over wide ranges of indices are of physical inter

In the following we propose a method for evaluating arbitrary functions of finite-rar
self-adjoint operators, which allows an effective solution for any problem of spectral an
ysis/synthesis connected with a numerical model of an operator under consideration.
described method accesses the operator only via its action. Thus, the user only nee
provide a subroutine which computes the product of the operator and a vector. Only a s|
number of vectors resulting from successive iterations must be stored in memory; this me
it possible to study very high-dimensional problems which otherwise could not be treatal

We shall show how a function of an operator can be represented by a polynomial ex
sion. Especially inverse problems are considered by studying the singular value decor
sition. After reviewing basic properties of symmetric operators in Section 2, we develor
Section 3 a computational approach for evaluating functions of real symmetric and antisy
metric operators. In Section 4 we demonstrate how the method can be applied to perform
singular value decomposition, and in Section 5 we present an illustrative example of spe
analysis of the Laplace tidal model and separate surface waves and geostrophic motio
its framework. Section 6 is devoted to an application of our method to the solution of inve
problems in the spirit of singular value decomposition. By considering the problem of rec
structing oceanic circulation from observed sea surface elevation data we demonstrate
formance of the method in spectral synthesis. The final section contains concluding reme

2. OPERATOR-VALUED FUNCTIONS

Let us first describe our notation. Throughout the article we shall consider vector spa
over the field of real numbers supplied with a Euclidean structure and use Dirac’s bra-
notation to distinguish between column and row vectors.

In order to specify a Euclidean structure, we need a symmetric positive Gram'’s mat
g, which determines the scalar prodygt, ") d:ef(wghﬁ’).

Given alinear operatdt, we define its adjoint(', by means of the equatiaf(’ v, ¢) =
(¥, Ho). In matrix notationH' = g~H"g, whereH™ means transpose. An operator is
called symmetric (self-adjoint) if it coincides with its adjoint. Similarly, an operatas
antisymmetric, if it is opposite to its adjoint, i.e.,4f = —L. In the following treatment we
shall always assume that is a symmetric operator, an@lis antisymmetric.

The spectral theorem claims that for any symmetric opefdtacting in aD-dimensional
Euclidean space there exists a complete orthonormalbsggt. . ., |¥p) of its eigenvectors
and a corresponding set, . . ., ep of eigenvalues:

(Wilglv) = 8, i,k=1,...,D, o)
HIvi) = elvi). @)

Operators defined b?k Wk (Yk|gare also self-adjoint and are called spectral projector:
sinceP? = P«. They supply us with a partition of unity:

1= P (3)
k
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The symmetric bilinear forng, defining the scalar product, and operatpmlso may be
decomposed:

g=>_ glvw) (v, @)
k

H=> aPc=>_ el (Vg (5)
k k

An anti-symmetric operatat is characterized with similar properties: there exists a bas
Y1, ..., ¥p such that (1), (3), (4) are valid, and

L= Xk:sk|1ﬂk><‘/fa<k) g,
LIV = ex|[Voao)s
with
Eo(k) = —Ek- ©

Hereo is an involution acting in the space of indicesio (k)) =k. The spectrum of an
anti-symmetric operator is purely imaginary and coincides with thesget. ., iep.

Now we are prepared to define functions of operators. @) be an entire analytic
function of a complex parameter This means thaf may be represented by a converger
series:

f(e) = Z fre".
n=0

Similarly, we may substitut@{ for ¢ in this formula and obtain

FH) D fk” )
n=0
=Y fEPe= ) FElvn) (kg ®)
k k

Here the second identity was derived with the aid?3f= Py, which holds for anyn > 0.
We see that for evaluation df(H) only the behavior off (¢) at the spectral points is
important. Thus, we can use (8) for computing any function of an operator, provided
regular on its spectrum. However, formal application of this formula to nonsmooth functi
also may make sense. For instance, the function

e 8e—H) =) 8 — e P (9)
k

is connected with the distribution of eigenvalues and eigenamplitudes.
Given any vectojvag, we may introduce the associated Chellen—Leman spectral funct

ovac®) £ 8(e — e (Yilglvag (10)
k
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which shows the location of eigenvaluésgeaks at = ) and the corresponding ampli-
tudes in the decomposition 6fac) into a superposition of eigenmodes:

vag =) 1¥) (¥xlglvag.
k

It is easy to see that the Chellen—Leman function is just a certain matrix element of (9)
Ovac(e) = (vadgé(e — H)|vag.
Similarly, the spectral function

or(e) €8 — e (11)
k

describes the density of distribution of eigenvalue${oit may be obtained as a mean of
matrix elements over an ensemble of random vectors:

on(e) =Y _ 8 — eMean{|(yx| /al€) 1%} (12)
k
1
=M 6(e — H)— . 13
ean{<s|¢§ (e >ﬂ|s>} (13)

Here |&) is a normally distributed random variable, and Mgar} denotes the average
value. In practice we can only evaluate the mean over a finite ensemble of indepent
realizations of a stochastic varialjig. This implies that our estimate of mean values of
squared amplitude1$x/rﬂ¢§|§)|2 on the right-hand side of (12) will be equal to unity only
approximately.

For antisymmetric operators we have to use functions which are regular on the imagir
axis in the complex plane. Any function of this type may be uniquely represented as
sum of an even functio& and odd function :

f(e) = E(—ie) +il (—ie). (14)
If £ takes real values, the functioBge) andl (¢) also must be real. The analogue of (8) is
f(L)=E(—iL)+il (—iL), (15)
with £ denoting an antisymmetric operator and

E(-i£) =) E@lyw) (¥klg,
k

(=10 = 1El¥) (Wowg:
k

3. EXPANSION IN ORTHOGONAL POLYNOMIALS

In practice in a high-dimensional case it is impossible to evaluate a function of an oper:
exactly, because we do not know either eigenvalues or eigenvectors beforehand. We
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can evaluate a polynomial function by successively compaing(?, . .. . (In this section
we shall only deal with symmetric operators, sineel is self-adjoint and we may use
(15) to turn an antisymmetric case into a symmetric one.) Thus, given a funttion
we need to choose a polynomial approximat®(e) to it and to evaluatd® (). Since
only valuesf (g¢) are important, the approximation must be of high quality only on
finite interval, say Emin, Emax), Which contains the spectrum. According to the Weierstra
theorem, a continuous function may be approximated with any accuracy, but practic
it is difficult to obtain such an approximation explicitly. A straightforward way is to us
the orthogonal polynomial technique. For the sake of brevity here we shall consider «
Chebyshev polynomials as suitable for most cases, although sometimes it might be
convenient to use a different basis in the space of all polynomials.

3.1. Expansion in Chebyshev Polynomials

Chebyshev polynomials,Te) of the first kind (see [1]) form a complete orthogonal se
in the space of functions on the intervat1, 1) with respect to the weighde /+/1 — £2.
Since they meet the parity condition

Tn(=&) = (=1 "Ta(e),

we can represent an arbitrary even functiBiig), and an odd function, (¢), as a sum of
even and odd polynomials as follows:

E(e) =) anTan(e), (&)= bnTans1(e). (16)
n=0

n=0

Explicit formulas for evaluation of the coefficierdg andb, by means of the fast Fourier
transform may be found in the appendices. If the spectrum of an opé#alies in the
interval (—1, 1), representations

E(H) =) anTan(H), 1(H) =) bnTans1(H)
n=0 n=0

are also valid. Introducing

1A &' Ton(H)Ivag, [Bn) & Tona(H)vag,

we obtain
E(H)Ivag = ) _ anlAn), 17)
n=0
| (H)lvag =) _ bn|Bn). (18)
n=0

Expansions of this kind may be used for treating any operator. Suppose that the spe
of H is contained in the intervédEnmin, Emax - IN order to evaluaté& (H), we must compose
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an auxiliary operator

def 2 Emax + Emin)
&= ——m(H— ———— 19
(Emax_ Emin) < 2 ( )
(its spectrum is contained in the intengat1, 1)), represent an auxiliary function
f(g) d:ef F [Emax+ Emin + Emax_ Emin8:| , |8| <1
2 2
in the form
f(e) = E(e) +1(e),
whereE(¢) is even and (¢) is odd, expand them in a series (16), and use
F(H) = (&) =) _{anTan(€) + buTansa(E)}).
n=0
Similarly,
F(H)lvad = _ {an|An) + bn|By)}.
n=0
The vectorg A,) and|B,) can be computed recursively:
|Ao) = [vag, |Bo) = E|Ao),
|Ant1) = 2€|Bn) — |An),
[Bni1) = 28[Ans1) — |Bq), n>0.
It may be easily shown that
[An) =Y [¥) (—1)" cosndi) (Y| glvad, (20)
k
[Bn) = Z [¥) (=1)" sin[(n + 1/2)6](y«|glvao, (21)
k
e = Emax+ Emin + Emax_ Emin sin(@k/Z). (22)

2 2

3.2. Digital Filters

For numerical evaluation we have to truncate the infinite series (16). This procedure r
be interpreted in two ways. Either the multiplication of the Fourier coefficients by the factc
1, 0<sns<N-1
=97 T = ’ 23
o {0, N <n, (23)
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or the employment of smoothed functions,

[e¢]
E ()M =% " icnan Ton(e),

n=0

[e.9]
| (g)(smoothed Z knbnTons1(e),
n=0

instead of the actual ones. These smoothed functions (usually referred to as windows;
be obtained as a result of application Ege) and | (¢) of smoothing Hilbert—Schmidt
integral operators of finite rank which are completely determined by the coefficients (23
only a finite number of coefficien{g,} do not vanish, the smoothed functions appearto |
polynomials, as is necessary. However, their behavior depends on the smoothing oper
and we are faced with the problem of choosing the optimum ones. The most simple ke
(23) provides approximation of low quality because of the Gibbs effect. Its improvemer
just the problem of digital filter design and is extensively considered in a signal proces
(e.g., [2, 3]), so we shall not address it here.

3.3. Spectral Density and Distribution of Eigenvalues

Here we shall consider the rescaled operator (19) instedd ¢his surely is not a
restriction) and, instead of the spectral function (10), we shall use a more coarse one,

pvac®) £ [56 — 61 + 56 + Bll(Yrlglvag 2,
k

with 6 = 2arcsir(eg). It may be evaluated with the help of the spectral density windc
determined by a one-parametric family of coefficients

ag = 1, a,(0) = E(—1)n cogng), 0<0 <. (24)
T T

In view of (20)—(22) and the identity

80 —6)+860+6) =) (1) an(®) cosnd’) (25)
n=0

which is valid for—m <8, 8’ < 7, we conclude that

puac(8) =Y _ an(0) (vadg| An). (26)

n=0

Note that using this window, we are not able to distinguish contributions coming from
eigenvaluegy and—egg to the amplitude of thé-constituent ofoy,(0) até = 6. In order
to distinguish betweern, and—e&y, we need to employ an odd spectral density window ¢
well.
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Similarly, the distribution of eigenvalues may be described by the function

def

pr(©) =D 86 — ) + (60 + 6]

k

=) an(0) Mear{(vadg| An)}, (27)
n=0

where|vag = g~%?|¢) and|¢) stands for a normally distributed random variable.
Truncationa, — kna, of any of the above series corresponds to smoothing (convolutio
of the corresponding function with the kernel

1]« >
K(6) = ;{EO + nz;lkn cos(ne)} (28)
on the interval—, ) with periodic boundary conditions.

3.4. Antisymmetric Operators

Antisymmetric operators arise as generators of one-parametric groups of orthogc
transformations of an Euclidean space and usually are encountered in evolutionary p
lems. Here we shall adopt the above formulas to this case in such a manner that only
numbers will appear in the process of computation.

The spectrum of an anti-symmetric real operafiris purely imaginary and is invariant
with respectto the involution — —eg, with ¢ being a complex spectral variable. Introducing
a self-adjoint operatd e L, =+/—1,we canuse the previous formulas for processin
‘H. In terms ofL the procedure may be formulated as follows.

In order to evaluaté (£), compose an auxiliary operatbt= L/Emax, WhereEmax> 0
bounds the spectral radius6from above, represent a functior> F (i e Emay) in the form

FieEma) = E(e) +il (g), —1<e <1,
whereE(¢) andl (¢) are even and odd functions of a real variahland use
F(L) = E(—i&) +il (—i&).

Introducing real vectors

1A E Ton(—i&)vag, [Bn) EiTona(—i&)|vag,

we get

E(-ié)lvag =) an|An),

n=0

il (—i&)vag = > bn|By),

n=0

F(L)lvag = > {an|An) + bn|Bn))}, (29)

n=0
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as soon as (16) holds. The recursion relation takes the form

[Ao) = [vag, [Bo) = ElAo),
|An+1> = _25|Bn> - |An)’
[Bni1) = 281 Ans1) — |By), n>0.

All other formulas remain unchanged.

4. SINGULAR VALUE DECOMPOSITION

Singular value decomposition (SVD) is a particular application of general spectral the
of self-adjoint operators to the case where a linear oper@anaps one Euclidean space
into another. It is frequently used in inverse theory and we shall apply it in an exampl
Section 6. We shall denote vectors from the source space with capital letters and ve
from the target space with small letters. Euclidean structures of the source and target s
will be specified with the help of the Gram matric8sandg, respectively.

In most applications SVD serves as a tool for solving an over- or under-determined sy
of equations,

Q) = |vag,

with |®) considered unknown. A straightforward SVD solution is

) =) 8—1k|wk><wk|vac;». (30)
€k
Heregy > 0 stand for nonzero singular values @f |¥y) and|yy) are the corresponding
normalized singular vectors in the source and target spaces, respectively.
From a general point of view, singular values arise as the result of spectral decompos
of a self-adjoint operator,

def | O Q
H= {QT O} . (31)
It is well known that nonzero eigenvalués, ..., Ep (D is a certain integer) of op-

eratorsQfQ and QQ' coincide. Let{|¥)} and{|y\)} be the corresponding normalized
eigenvectors:

(Q'Q — E|W) =0, (¥|G|¥}) = bk, (32)
(QO" — Elvw) =0, (ylglv) = dkk- (33)

Since all eigenvalueBy are positive (recall that we are considering only nonzero eigenv.

ues), we can unambiguously represent them as squaseéj:eét/Ek > 0. It can be shown
thattes, ..., +ep appear to be all nonzero eigenvaluegoMoreover,| ¥ ) and|yy) can
be normalized in such a manner that relations

ekl W) = Q' |Y),  exlvk) = QW)

are satisfied.
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Let ,?) and|w{”) denote normalized solutions to the equations
O\ _ Oy _
Qly”) =0, QI¥P) =0,

respectively. It may be shown that vectpug) and|1/fi(°)) form an orthonormal basis in the
target space, wheref$g) and|\I/Jf°)) form an orthonormal basis in the source space.

With this notation one can easily verify that given any functib), the following
identity is valid:

o = zk:f(gk)zf(_gk) [W”gﬁk'g |\lfk><o\lfk|G}
" ;W wims 0]
gl
f(O)Z ) \L,<0>’G (34)

This formula is rather interesting, so let us consider it in detail. In the case of an o
function f, i.e., whenf (—¢) = — f (¢), (34) takes the form

0 WG
f = f .
=2 fe woonis 0" )

Comparing it with (30), we see that the SVD solution (30) is just a component of the vec

o) =100 "5

providedf (¢) =1/e.
In the case of an even functidn where f (—¢) = f (¢), (34) takes the form

Wlg 0
f(H) = f
70 Ek: (8”[ 0 |W)(WG
v @) (g 0
f(O
. “Z[ (W%l 0

0

’\y<0>><q,<0>|G (36)

f(O)Z

Since the spectrum of{ is invariant with respect to involution+— —e, we can use
formulas of Section 3.1 for evaluation of

F(H) { vag ] .

[VAC)
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Assuming that the spectral radius #f is Enax, We may form an auxiliary operator
& =H/Emax represent an auxiliary functioh(e) def F (¢Emay as a sum of an even and
odd functionsE(¢) andl (¢), expand them in a series (16), introduce vectors

] e | a |

V) VAC)
[un) | def lvag
[|un>} = Tava(é) LVAC>] ’

and get
> anlun) = E@lvi) (widgivag + E©) > [ ) (1| glvac),
n=0 k i

Y anlVn) = > El W (WIGIVAC) + E0) ) |W]”)(¥[”|G|VAC),
n=0 k j

o0

> bnlUn) =Y 1@ W) (vklglvag),
n=0 k

[e]

> bulvn) = > 1 (&0 [¥k) (WK GIVAC).
n=0

k

The vectorsug), ..., |Vh) can be computed recursively:

|Ug) = |vag, |Uo) = Q'|up),
|Un+1) = 2Q|Un) — |Un),
lUnt1) = 2Q[Unya) — [Un), N =0,
Vo) = [VAC). |vo) = Q| Vo).
IVns1) = 2Q7 o) — [Va),
[vnt1) = 2Q|Vhy1) — |vn), N> 0.

4.1. Distribution of Spectral Amplitudes

In order to see how eigenconstituents of vectoes) is target space and ¢¥AC) in
source space are distributed in the spectral range, we introduce the spectral density fun

pac®) £ Y600 — 001 (¥lgvag > +8©) Y [(w”]g|vac) |
ok>0 i

=) " an(®)(vadgluy) 37)

n=0
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and

puac(®) E D" 50 — 601(WIGIVAC) 2+ () Y [(¥{”|G|VAC)|®
Ok>0 i

=) a(6)(VAC|G|Vy),
n=0

where the windova, (0) is given by (24) andy = sin(6x/2). The procedure of their evalu-
ation is evident from the above formulas.

In analogy with Section 3.3 distribution of singular values relevant to the target spac
described by a function

pg(©) = 8(6) DIM[NUI(QD] + > " [8(0 — 6) + (6 + 6]

6k>0

= MeaRac{pvac(0)}, (38)

where Dim[Nul(Q")] is a dimension of the kernel a® and averaging is done over an
ensemble of random vectogag = g~*/?|¢) (see above).

5. SPECTRAL ANALYSIS OF THE LAPLACE TIDAL MODEL

To demonstrate the method in action, we shall consider the classical Laplace tidal mc
as an example. It takes into account only horizontal movements of a fluid on a pla
and describes an ocean by linearized shallow water equations. Shallow water equa
are equivalent to 2D barotropic hydrodynamics, where the internal energy of the fl
only depends on density. This ensures that we have a Newtonian mechanical system
nonpathological properties.

To specify the model, we need two scalar functions: the dépthf the ocean and the
local Coriolis frequency2, which is just a projection of the planet’s angular velocity on
the local vertical axis. The dynamical variables are the vector fieldhich represents
depth-averaged velocity of water, and a scalar fielthich represents departure of the sec
surface from the geopotential surface.

The equations of free motion are the following:

¢ +div(Hv) =0, (39)
V— 2Q(*V) + gV¢ = 0. (40)

Hereg is acceleration due to gravity,denotes the counterclockwise (when looking from
outer space) 90revolution of a tangent plane about the normal (vertical) axis and conne
the directions of the velocity of a moving particle and the Coriolis force.

For convenience of consideration we shall combine the velocity and pressure fields
unique fieldgp, and rewrite (39)—(40) as = L. Particular details about the structure of the
field ¢ and operatof may be found in Appendix B. The space of all possible configuratior
of ¢ shall be addressed as the phase space.

It may be shown thaf is anti-self-adjoint with respect to the scalar product generate
by the quadratic form of energy and, therefore, any configurgtionthe physical fields
may be represented as a superposition of its eigenvectors.
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For illustrative purposes we shall put the depth of the ocean and the local Cori
frequency constant throughout the globe and assume it is a closed compact surface
model describes steady gyres and rapid surface waves with phase veleeity/gH.
The spectrum of free oscillations is discrete and eigenmodes may be described in t
of eigenfunctions of the Laplace—Beltrami operator. Each eigenfunction of the Laplac
corresponding to an eigenvalée- 0 also corresponds to a steady solution of the tid:
equations (to a geostrophic motion with zero frequency) and to two oscillatory surf
gravity waves with frequency/4Q2 + c2¢. All these three modes exhibit the same shar
of surface elevation which coincides with the matching eigenfunction of the Laplacian,
different character of fluid motion. If our 2D planet is topologically different from a spheil
there are alsol2inertial modes, wheré is the genus (the number of “handles” glued t
a sphere) of a geoid. All of them have the same frequereyn2ill surface elevation, and
are just uniform parallel flows which rotate under the action of the Coriolis force.

With such a full description in mind we composed a finite element numerical model
a torus-like geoid (see Appendices A and B) and checked its spectral properties ag
those of the actual continuous one. First, we generated an ensemble of three random v
and used (27) for evaluation of density of states. Figure 1a presents a smoothed sp
density obtained via truncation of series (27), and Fig. 1b depicts its integral, the cumul:
distribution

Dimpui 2
N(w) = — + — / 8(0 — wy) do'.
Dimgy ~ Dimgy, ) Z “

0<a)k

Herewy stand for eigenfrequencies, Dimand Dimy, denote the full dimension of the
phase space and of the null subspacé,aespectively, and the factor 2 before the integral i
necessary because there are two eigenvectors corresponding to each eigenfreguehcy
The valueN (w) is just the fraction of eigenmodes whose frequency do not exeeed

10

-

- E 0.8 4
) ]
s S
o L os
3 5
= —
= 2
[+ b
= % 0.4
]
0.2
- 1 -t Q - T
10° 10' 107 10° 10'
EigenFrequency (cycles/day) EigenFrequency (cycles/day)

(a) (b)

FIG. 1. Density (27) of eigenstates versus eigenvalues, (a), and cumulative distribution of eigenmodes i
spectral range of the numerical model, (b). The Chebyshev and Cezaro filters were used for sriguehikein
both graphs. The dotted line points at the frequency determined by the uncertainty principle (due to truncati
series (27)) and showing resolution in the frequency range.
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The phase space of the actual finite element model hag,Pi#5120 degrees of free-
dom, and each of them might be exited as an oscillation of a particular shape. From
consideration of the continuous model we could expect that the geostrophic sector w
occupy about 13 of the phase space and the gravity waves sector al#dunvith a negligi-
ble share of inertial sector. However, Fig. 1a shows a high peak at the inertial frequency,
from Fig. 1b we see that the inertial sector is as large as the gravity one. This humeric
revealed discrepancy is due to the structure of our finite element model: analytical in
tigation shows that on a uniform grid withl x N nodes there exist N holomorphic
covector fields (only two of them must survive in the continuous limit), and each gives ri
to an inertial oscillation.

Whereas the major part of the spectrum corresponding to gravity waves at given res
tion looks as being continuous, near the low-frequency boundary it is obviously discre
Zooming enables us to determine periods of the most slow eigenmodes in the gravity se
of the model: 400, 306, and 226 min.

Second, with the aid of the Fourier transform we were able to compose a synthetic w
pattern with known contributions from the geostrophic and gravity seatotsyr + ¢g.
Figure 2a shows the flow structure originating from superposition of two geostrophic mo
and one gravity wave, and in Figs. 3a and 3b we can see the compgpeanthys separately.
This separation was achieved by applying a projecting operator on the invariant subspax
L forming the geostrophic sector to the figlchnd, since this operator may be represente
as a function of, its action was evaluated as described in Sectiorngg.4: F (L), with

_ ls if|a” E a&v
Flw) = {O, if || > wy. (41)

Here O< w, < 2Qis afrequency such that it separates the lower bound@rygfthe gravity
sector from the geostrophic sector. The other constitygnis equal tap — gr.
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FIG. 2. The flow structure arising as a combination of two geostrophic modes and one gravity wave, (a),
the corresponding spectral function (26) (solid curve) together with the employed approximation to the projec
window (41) (boundary of the shaded area), (b).
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FIG. 3. The flow structure of the geostrophic, (a), and gravity, (b), contributions to the flow shown in Fig. Z

Surely, instead of the exact value Bfl£), we computed an approximatida(L) to
it, with P(w) being a polynomial. Its degree is a function of the required accuracy
approximation and of the rati®max/ws, Wherewmax is the maximum eigenfrequency of
the numerical model. The shape of the employed polynomial is shown in Fig. 2b v
the spectral function (26) corresponding|t@ac = ¢ in the background. Note that in the
logarithmic scale the width of thé&-peak corresponding to the geostrophic contributio
looks much wider than that corresponding to the gravity wave. Needless to say that, ¢
unwanted modes (gravity for Fig. 3a and geostrophic for Fig. 4a) were suppressed
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FIG. 4. Spectral density (37) of noisy data (solid curve) and of noise only (boundary of the shaded a
as functions of singular values, (a), and corresponding cumulative distributions (44) (solid and dashed ct
respectively), together with the employed inverting windog) (boundary of the shaded area shows the ratic
I (s)/s7* of the regularized and exact windows) versus singular values, (b). The dotted line has the same me
asin Fig. 1.
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factor of 10/2, one cannot visually distinguish these numerically obtained pictures fro
those similar but analytically constructed.

6. SOLUTION TO AN INVERSE PROBLEM BY SPECTRAL SYNTHESIS

Another interesting application is the problem of reconstructing large-scale oceanic
culation from the sea surface height (SSH) data. Collected by satellites, such data al
high accuracy at large scales and might be used for subsurface imaging of oceanic curr
Time averaging removes fast gravity waves from the SSH signal and we may assume
the resulting deviation of the sea surface from the geopotential surface in the framewor
the Laplace model is only due to exited modes from the geostrophic sector. Thus, we
faced with a problem of spectral synthesis: find a stadéthe ocean, such that it is a super-
position of slow eigenmodes of the hydrodynamic system and meets experimental ¢
This requirement of consistency with data shall be expressed in the classic way adopte
the geophysical community. L&t be the spectral projector on the slow subspace&?)lbe
an orthogonal projector on the subspace with zero velocity of the fluid, ar@l €rop
be the observation operator which maps the space of possible system configurations
the data space. Namely, it extracts the slow geostrophic componeraraf computes its
contribution to the observed surface elevatiprThe consistency means that in a sense
equationQ@¢ = ¢ must hold.

In order to obtain a well-posed inverse problem, we have to equip the data and pt
spaces with prior statistics which reflect our knowledge about the experimental tool :
dynamical system. Normally in assimilation schemes it is assumed that these statistic:
either uniform or Gaussian, with known mean and covariance. In our case we put p
statistics in both spaces to be Gaussian with zero mean. The covariance matrix in the p
space shall be determined by the quadratic form of energy (the sum of kinetic and potel
energy of the fluid), and in data space it shall be supposed to coincide with the ordin
L ,-scalar product of functions defined on the globe. Note that, since the sum of signal
noise contributions to the observed variables is known (it is equal to data), we always
estimates of signal and noise in the data space simultaneously; given an estimate of a si
we get an estimate of noise by simple subtraction, and vice versa.

Employing (30) we can state that the solution to our inverse problem may be obtair
through singular value decomposition of the oper&or

1
o= = % (42)
S
5>0
Here(...,...)is the scalar product in data spase; O stand for nonzero singular values

of Q, Wy andyy are the corresponding normalized singular vectors in the phase and ¢
spaces, respectively. They may be obtained as solutions to Egs. (32)—(33). Oggristor
the adjoint ofQ with respect to Euclidean structures in the data and phase spaces wt
were specified before. Note that singular values and vectors not only do depend on
observation operata®, but on Euclidean structures as well, i.e., on our prior knowledg
about stochastic properties of the noise which contaminates data and expected configur
of the hydrodynamic fielg.

Inthe case of our toy planetitis easy to find the singular value decomposition analytice
It appears that with the choice (41) for the projecks= 7 (L) one may take the set of
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L,-normalized Laplace’s eigenfunctions o}, the set of corresponding geostrophic
motions for{¥y} (normalized with respect to the quadratic form of energy), and the :
{sc =2Q//4Q2 + c2¢¢} (with & being the Laplacian eigenvalues) for the correspondir
singular values. All gravity and inertial motions lie in the kernel@fand were denoted
aS\If]-(O) in Section 4. We see that large-scale geostrophic motions corresponding to s
eigenvaluesy are best observed. Note that in case of a torus eigenvalues of the Lapla
correspond to wavenumbers.

It is well known that one should not attempt to perform summation in (42) over
nonzero singular values, for this may lead to situations where a major part of the informe
is drawn from the noise. A good way to take control of things is to sum only over thc
singular values which are not very small in comparison with the largest one and wt
correspond to spectral amplitud@s, £) of relatively large magnitude. Both cutoff levels
are determined by signal/noise ratio. In other words, instead of the exact inverting win
1/sitis reasonable to use a regularized selective wind@g),:

0= 1(8)Wn D)W (43)

5>0

In order to make a proper choice for the inverting window it is important to know hc
data are distributed in the spectral sense, i.e., whether large or small amplifudes
correspond to major singular values. Constituents corresponding to zero or small sin
values cannot be represented by the observation operator, while those correspond
large singular values are representable and may easily be reconstructed. Quantite
this distribution is described by the spectral density (37). In practice, especially when
dimension of the data space exceeds several thousands, or when the same singulal
corresponds to several singular vectors and the delta-peaks overlap, instead of (37
worthwhile to use the cumulative distribution function,

SOEI WO+ Y 1w OR (44)

O<sc<S

which is just the integral of (37). In order to see how noise contaminates data, we |
generate it artificially and perform its spectral analysis with respect to the observa
operator via formulas (37) and (44). Overlaying the plots of the experimentally collec
data and of the artificially generated noise spectral densities, we may get an idea ¢
the signal/noise ratio in different spectral bands and compose a proper inverting win
I (s).

For numerical demonstration we composed a large-scale current as a mixture of
geostrophic modes with the parameters as in the previous section and contaminate
resulting surface elevation (its maximum value was about 40 cm) with a random nois
10 cm amplitude, forming a synthetic data which served as an inpat for processing
according to Section 4. Distribution of spectral amplitudes, (37) and (44), are prese
in Figs. 4a and 4b, together with similar distributions of an artificially generated no
(obtained by a different run of the random generator). The plots clearly show that we |
a tool for selecting a signal from noisy data. Employing the inverting window shown
Fig. 4b, we were able to suppress 97% of the noise and to retain 80% of the signal pc
The reconstructed velocity field agrees well with the original circulation pattern showr
Fig. 3a.
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7. CONCLUSION

We have introduced a new approach for iterative solution to problems of spectral an:
sis/synthesis with respect to symmetric operators. Only Btiheiori spectral information
is required, and it may be cheaply obtained numerically. Employing the methods of ¢
nal processing for the design of optimal windows allows us to determine the neces:s
number of iterations and the accuracy of approximation beforehand. In comparison v
conventional matrix decomposition methods our finite-storage algorithm allows us to e\
uate the action of operators represented by full matrices which cannot be either store
even computed explicitly. Since we access the operator only via its action (see recur
formulas in Sections 3.1 and 3.4), its possible sparsity may be advantageously explo
The major drawback of the method comes from its sequential nature which is not favore
for parallelization.

APPENDICES

A. The Geoid

By definition a geoid is a 2D closed surface equipped with Riemannian metric (s
inherited from the ambient 3D space). The corresponding measure of a 2D volume sha
denoted withdu. Counterclockwise 90revolution of the tangent plane about the normal
(vertical) axis serves as a natural complex structure on a geoid and may be used fo
selection of holomorphic coordinates [4].

For an invariant formulation of hydrodynamics it is convenient to use the calculus
external differential forms. In 2D the space of forms consists of three subsgées v,
and£@. They are formed by scalar functions, covector fields, and antisymmetric tens
of rank 2, respectively. The linear space of all such fields will be supplied with Hodge
scalar product,

(0. ¢) & / (x@) A ¢, (A1)

wherep andy’ are external forms, angstands for the unitary Hodge'’s operator acting as
follows: if zis a local holomorphic coordinate arfdis an arbitrary function, then

#f = fdu, xfdu=f,
xfdz=ifdz, xfdz=-ifdz

All subspaces® are connected by invariant linear operators as shown in Fig. 5, whe
dq andxq denote restrictions of external differentiation and Hodge’s operataf ®n
respectively. These relations appear important for the definition to finite-dimensional
proximations to velocity and pressure spaces.

In 2D we only need to specify nonpathologicP’, €@, x;, d1, and the measuréy.
Then requirements of self-consistency uniquely deteridiifleandd,. Indeed, the structure
of Hilbert space, introduced by (A.1), implies th&® is isomorphic ta€©@, and it also
determines the adjoint operandﬁr. In continuous theorylg = %1d1%> must be valid; thus,
d; and its adjointd,, are also determined. All interesting operators may be represented
terms of them, say, divergence-islf, and Laplacian is-(d'd + dd).
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*p

dy

£ dz £@)
*2

FIG. 5. Main invariant operators in the space of differential forms.

£

B. 2D Finite Element Hydrodynamics

Instead of the vector field it is convenient to use its rescaled dual, a covector field
In local coordinatex?, x> we putw gef cgkvX, wherev = v'9/0x', w = w; dx, and
gik dx' ® dxX stands for the metric tensor. Also, instead;afe shall use the scalar field
w % g¢. In these variable equations of motion (39)—(40) take the form

wdp —d(xcw) = 0, (B.1)

W — 2Q (xw) + cdw = 0. (B.2)

The velocity and pressure fields may be combined in a uniqueﬁig%w + w. This field
takes values in the external algebra of cotangent bundle to the geoid. The linear space

such fields will be equipped with Hodge’s scalar product (A.1). An antisymmetric opere
L, defined by

L:w+we 2Q:w) +df(cw) — ¢ dw,

represents an antisymmetric bilinear fopmg ¢’ +— (¢, L¢'), which is connected with
Poisson brackets in the space of functionals of the feld

ger (8F .8G
o (.62)

Here the variational derivativ&F /§¢ of a functionalF is regarded as a tangent vector tc
the space op-fields, satisfying
8F
SF = (— 8¢)>

3¢

for any infinitesimal fields¢. With these definitions equations (B.1)—(B.2) can be writte
in Hamiltonian form, i.e.,

¢ ={p, G}, (B.3)

where HamiltoniarG coincides with the sum of the kinetic and potential energies of tl
fluid. Its value is just the squared Hodge'’s norm of the figld

_1f 5 24, _ 1
g—2/<w W) dje = 5. 0).
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Equations (B.3) are nothing bat= L¢ rewritten in variational form. Note, that our system
is neutrally stable, because the spectrum of the dynamical operasquurely imaginary
and there are no nontrivial Jordan blocks.

For a formulation of discrete hydrodynamics we need finite-dimensional interpolati
spaces for representation of the pressure and velocity. To obtain them, we approximate
surface of atorus-like geoid by plane 2D triangular elements, and assumed its geometry
plain Euclidean. Scalar fields were represented by piecewise affine continuous functions
function of this kind is uniquely determined by its values at the nodes of the mesh. Cove
fields were considered to be piecewise constant, attaining constant values on partic
elements. Therefore, the metric tensor also was constant throughout each separate ele

We defined that a covector field is closed if its restrictions to any segment from differe
adjacent elements equal each other. In this case an integral of a closed covector field
a homologically trivial cycle is equal to zero. We also prescribe that external differentiati
maps the space of scalar fields into covectors in a natural manner, resulting in piece!
constant covectors. Simple considerations show that the dimension of the factor spac
closed covector fields modulo exact ones is equal to the first Betti number of the geoid
is necessary.

In the framework of the outlined variational formulation we do not need to speci
explicitly how finite element cells are related with each other by the Levi—Civita connecti
and we may restrict dynamical equations to any subspace of the full phase space.

In order to remain in the framework of geophysics we made the dimensions of the to
equal to the Earth’s radius, the ocean depth to 5 km, and the Coriolis frequency corresy
to one revolution in a day.

C. Odd Windows via Fast Fourier Transform

To compute the coefficien{®,} for an odd window

(&) =) bnTansa(e), le| <1, (C.1)
n=0

we substitute si®/2) for ¢ in (C.1) and get

0 > e 1
I <S|n2> = g(—l) bn S|n<n+ 2>9, 0] < m.

If only a finite number of coefficients are nonzero, we can solve this equation by the f
Fourier transform. Specifically, given an odd functio(®),

N-1 1
y© = fn sin[(n + 5)9} C2)

n=0

we only need to evaluate it at the points
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and use the following reconstruction formula:

22 [n 1 1
Pr=1 z:sm[N (n + 5) <m+ E)] ¥ (). (C.3)
m=0

Thus,b, = (—1)"B,, wherepg, are given by (C.3) and

@) =1 sing
14 = 2

D. Even Windows via Fast Fourier Transform

Evaluation procedure for even windows is similar to the above one. Substituti@g2jn
forein

Ee) =Y anTan(e), lel <1, (D.1)
n=0

we obtain
9 o0
E (sm§> = nzzg(—l)“an cosnd), |6] < 7.

Given an even trigonometric polynomiglé),

N-1

y(0) = ancosns),

n=0

we have to evaluate it at the poirttg =7m/N and use

1= 1
= mzzjlywm) + o[V @ + 7],
2= Tnm 1 n
o =y 2 COS(T)V(Om) + N[V(O) + (=D,
def N-1
y. = DNy 0 +2Z(—1>”‘y<9m)].
m=1

Thus, we pul, = (—1)"ay, where the coefficients, must be computed according to the

above formulas, and
.0
9) =E — .
y(0) (sm2>
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